
VoIP monitor sniffer manual
This manual describes installation and configuration of the VoIPmonitor C++ sniffer version 4.0. If you are
looking for Commercial WEB GUI manual, go to http://www.voipmonitor.org/download section.

Table of contents
Table of contents
Introduction

How it works
Common use cases

Sniffing on linux host
Port mirroring

Installation
Static binary
Compile shared binary

Debian 6 squeeze
Centos 6.2

Database configuration
MySQL

Running voipmonitor
Configuring voipmonitor

/etc/voipmonitor.conf
Troubleshooting

voipmonitor does not sniff anything

version 4.0 page 1

http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
#h.g47avxd28iwe
#h.g47avxd28iwe
#h.g47avxd28iwe

Introduction
VoIPmonitor is open source network packet sniffer for SIP and RTP VoIP protocol running on linux and
with small modifications also on any posix unix. VoIPmonitor was designed to analyze quality of SIP VoIP
calls based on network parameters - delay variation and packet loss according to ITU-T G.107 E-model
which predicts quality on MOS scale. Calls with all relevant statistics are saved to MySQL or ODBC enabled
database. Each call can be optionaly saved to pcap file with either only SIP protocol or SIP/RTP/RTCP
protocols. VoIPmonitor can also decode sound and play it over the commercial WEB GUI or save it to disk
as WAV. Supported codecs are G.711 alaw/ulaw and commercial plugins supports G.729a/G.723/iLBC/
Speex/GSM. VoIPmonitor uses jitterbuffer simulator to keep both direction of call synchronized.

How it works
VoIPmonitor is C++ program designed to handle thousands of simultaneouse calls. It listens on network
interface and analyzes all SIP calls on defined SIP ports (default 5060). RTP streams which carries voice
are analyzed for packet loss and variation delay (jitter). Each call is saved to MySQL or to any database
supporting ODBC. SIP signalization and RTP packets can be saved to individual pcap file which can be
opened with analyzers like wireshark and is also used by VoIPmonitor GUI.

Common use cases

Sniffing on linux host
You can install or compile VoIPmonitor binary directly on linux PBX or SIP server. This solutino do not
requires additional hardware and changes in network topology. The only downside is that voipmonitor
consumes hardware resources - RAM, CPU and I/O workload which can affect the whole system. If it is not
acceptable to share hardware for voipmonitor the second common use case is doing port mirroring:

Port mirroring
Port Mirroring is used on a network switch to send a copy of network packets seen on one switch port (or an
entire VLAN) to a network monitoring connection on another switch port => voipmonitor dedicated linux box.
Port mirroring on a Cisco Systems switch is generally referred to as Switched Port Analyzer (SPAN); some
other vendors have other names for it, such as Roving Analysis Port (RAP) on 3Com switches.

Offline pcap files reading
This is less common use case but also used in productions. VoIPmonitor is scripted to read pcap files which
are saved on production systems to file with tcpdump or tshark or with any packet sniffer supporting pcap
file format.

Installation

VoIP monitor sniffer can be installed in two ways - either as static binary which will run on any Linux

version 4.0 page 2

distribution with kernels >= 2.6.18 or compiled from sources.

Static binary

Static binary for 32bit or 64bit can be downloaded from http://www.voipmonitor.org/download pages. Step by
step for 64bit linux procedure:

wget "http://sourceforge.net/projects/voipmonitor/files/4.0/voipmonitor-i686-
4.0-static.tar.gz"
tar xzf voipmonitor-i686-4.0-static.tar.gz
cd voipmonitor-i686-4.0-static
./install-script.sh
cp voipmonitor.conf /etc/
mysqladmin create voipmonitor
cat cdrtable.sql | mysql voipmonitor

Now edit configuration file /etc/voipmonitor.conf and run voipmonitor /etc/init.d/voipmonitor

Compile shared binary

Debian 6 squeeze
apt-get install build-essential subversion libmysql++-dev libvorbis-dev
libpcap-dev apache2 php5-mysql php5-gd mysql-server unixodbc-dev

cd /usr/src
svn co \ https://voipmonitor.svn.sourceforge.net/svnroot/voipmonitor/trunk \
voipmonitor-svn
cd voipmonitor-svn
make clean
make
make install
mkdir /var/spool/voipmonitor
mysqladmin create voipmonitor
cat cdrtable.sql | mysql voipmonitor
cp config/voipmonitor.conf /etc/
#edit file /etc/voipmonitor.conf to your needs
cp config/init.d/voipmonitor /etc/init.d/
update-rc.d voipmonitor defaults
/etc/init.d/voipmonitor start

Centos 6.2
yum groupinstall 'Development Tools'
yum install subversion libpcap-devel mysql-devel libogg libogg-devel vorbis-
tools libvorbis libvorbis-devel mysql-server unixODBC-devel

wget http://tangentsoft.net/mysql++/releases/mysql++-3.1.0.tar.gz

version 4.0 page 3

http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download
http://www.voipmonitor.org/download

add “#include <string.h>” to ./ssx/genv2.cpp
./configure; make; make install
cd /usr/src
svn co \
https://voipmonitor.svn.sourceforge.net/svnroot/voipmonitor/trunk \
 voipmonitor-svn

cd voipmonitor-svn
make clean
make
make install
mkdir /var/spool/voipmonitor
/etc/init.d/mysqld start
mysqladmin create voipmonitor
cat cdrtable.sql | mysql voipmonitor
cp config/voipmonitor.conf /etc/
#edit file /etc/voipmonitor.conf to your needs
cp config/init.d/voipmonitor /etc/init.d/
chkconfig --add voipmonitor
chkconfig voipmonitor on
echo '/usr/local/lib' >> /etc/ld.so.conf
ldconfig
/etc/init.d/voipmonitor start

Database configuration
VoIPmonitor stores CDR data to MySQL or any ODBC enabled database. Installing and configuring
database is covered in previouse Installation chapter. This section explains it in detail

MySQL
This step assumes that MySQL server is started.

Create database - default is voipmonitor

mysqladmin create voipmonitor

Create SQL schema

cat cdrtable.sql | mysql voipmonitor

Running voipmonitor
Voipmonitor starts via standard init.d script /etc/init.d/voipmonitor start|stop. This script tells voipmonitor to
load configuration file from /etc/voipmonitor.conf. You can run voipmonitor also from command line

version 4.0 page 4

voipmonitor --config-file /etc/voipmonitor.conf

which will immediately fork and run as background. If you need to see what it does, run it like this

voipmonitor --config-file /etc/voipmonitor.conf -k -v 1

Almost all configuration directives can be also provided via command line (which takes precedence over the
configuration file).

To show help run voipmonitor without any parameters.

version 4.0 page 5

Configuring voipmonitor

/etc/voipmonitor.conf

Configuration file has only one section named [general] where all configuration directives belongs. List
of directives will now follow with their description and recommendation values. Name in [] brackets is
equivalent for command line which takes precendence over configuration file.

interface = eth0 [-i]
This specifies on which interface will voipmonitor listen. It can listen on one interface or on all interfaces. To
listen on all interfaces use interface = any

managerport = 5029 [--manager-port <port number>]
This specifies TCP port which will voipmonitor listen for incoming connections which controls voipmonitor or
for getting information about calls.
- reload configuration echo reload | nc localhost 5029
- get number of calls echo totalcalls | nc localhost 5029
- get list of calls in json format echo listcalls | nc localhost 5029
 (listcalls is currently limited to max 200 calls)

sipport = 5060
define SIP ports wihch will voipmonitor listen. For each port make new line with sipport = port (multiple lines)

pcap-thread = yes [--pcap-thread]
Read packet from kernel in one thread and process packet in another thread. Packets are copied to non-
blocking queue. Use this option if voipmonitor is dropping packets (you can see it in syslog). You can Use
this option with ringbuffer.

jitterbuffer_f1 = yes
jitterbuffer_f2 = yes
jitterbuffer_adapt = yes
By default voipmonitor uses three types of jitterbuffer simulators to compute MOS score. First variant is
saved into cdr.[ab]_f1 and represents MOS score for devices which has only fixed 50ms jitterbuffer. Second
variant is same as first but for fixed 200ms and is saved to cdr.[ab]_f2 Third varinat is adaptive jitterbuffer
simulator up to 500ms Jitterbuffer simulator is the most CPU intensive task which is voipmonitor doing. If
you are hitting CPU 100% turn off some of the jitterbuffer simulator.
Recommended for higher loads is to use only fixed 200ms.

ringbuffer = 20 [--ring-buffer]
This feature is the most essential parameter for high volume calls. The value is buffer size in MB allocated
in kernel space. This feature will work only on kernels >= 2.6.32 and libpcap >= 1.0. The static version of
voipmonitor contains libpcap 1.1.1. The ringbuffer is queued by packets from ethernet device and dequeued
by voipmonitor. If the buffer is low and the system is overloaded (CPU or I/O) packets will be dropped. This
situation will be logged to syslog.
Recommended value for high loads - 1000 (will take 1GB of RAM)
Notice: if you set this value over ~2000 libpcap will silently allocate nothing. Thus it is recommended to
check with "ps axl|grep voipmonitor" if the voipmonitor actualy uses amount of RAM you specified.

version 4.0 page 6

rtp-firstleg = no [--rtp-firstleg]
this is important option if voipmonitor is sniffing on SIP proxy like kamailio or openser and sees both RTP
leg of CALL. In that case use this option. It will analyze RTP only for the first LEG and not each 4 RTP
streams which will confuse voipmonitor. Drawback of this switch is that voipmonitor will analyze SDP only
for SIP packets which have the same IP and port of the first INVITE source IP and port. It means it will not
work in case where phone sends INVITE from a.b.c.d:1024 and SIP proxy replies to a.b.c.d:5060.

sip-register = no [-R]
This will save SIP REGISTER messages to PCAP files and CDR database. This is recommended only in
case you really need SIP REGISTER messages. It generates milions of records in database and pcap files.

savesip = [--sip-register]
Store SIP packets to pcap file.

savertp = yes [-R]
Store RTP packets to pcap file.

savertcp = yes [--save-rtcp]
Store RTCP packets to pcap file.

saveraw = no
Do not use this option. It will be removed in near future.

savegraph = plain [-G or --save-graph=[gzip|plain]]
This is usefull only if you have commercial WEB GUI which uses graph files for ploting graph

mos_g729 = no
enable MOS score for G.729 codec. If enabled, all cdr with 0 packet loss and stable delays will have
maximum MOS of 3.92 and for loss and unstable delay MOS will be calculated according to ITU-T objective
PESQ method for G.729 codec. if you want to use MOS as good search value which corellates loss and
delay into single value leave it disabled (which is by default). If set to no, all calls will be calculated like it is
G.711.
Recommended value = no

pcapcommand = gzip %pcap%
pcapcommand will run shell command after pcap file is closed (after call ends). %pcap% is substitution for
real pcap file name. execution is guaranteed to run in serialized way (not in parallel). This example will gzip
pcap file. Compressing the file to the same disk will overload disk I/O in high volume calls.

filter = udp [-f]

version 4.0 page 7

libpcap tcpdump style filter. Voipmonitor listens in default only for UDP packets. Unfortunatly filtering UDP
packets will filter all VLAN tagged packets which means that you cannot filter only UDP if you want to listen
to VLAN tagged packets.

spooldir = /var/spool/voipmonitor [-d]
This is directory where all pcap/graph/wav files are stored.

promisc = yes [-n]
This option is only relevant if you are mirroring traffic to your network card/cards. This will not work if
interface = any - in this case, use ifconfig to put your desired interfaces to promis mode.
Default value is yes and you want to turn it of on command line ues -n which will turn it off.

sqldriver = mysql
#sqldriver = odbc
#odbcdriver = mssql
#odbsdsn = voipmonitor
#odbcuser = root
#odbcpass =
voipmonitor can connect to mysql server or odbc driver. connecting voipmonitor to msssql please refer to
README.mssql

mysqlhost = localhost [-h]
mysql server, default is localhost

mysqldb = voipmonitor [-b]
mysql database, default is voipmonitor

mysqltable = cdr [-t]
mysql table, default is cdr

mysqlusername = root
mysql username, default is root

mysqlpassword =
mysql password, default is no password

Troubleshooting

voipmonitor does not sniff anything

- Always check if you actually see the SIP traffic. The easest way it to run

(apt-get install tshark | yum install wireshark)

version 4.0 page 8

tshark -i eth1 -R sip

if you do not see traffic, make sure that the interface is UP (ip link set up dev eth1)
if you use "-i any" and you are port-mirroring traffic, make sure you put interface to promisc mode (ifcofnig
eth1 promisc; ifcofnig eth2 promis;) you can put this directly in /etc/init.d/voipmonitor

- Check /var/log/syslog or /var/log/messages for any problems releated to voipmonitor. Voipmonitor logs to
syslog.
- Check if voipmonitor is runningn "ps axl |grep voipmonitor" and is using configuration file (--config-file /...)

version 4.0 page 9

